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The function } ~ l satisfies elastic unitarity, In the limit as 5/ —»0 it follows that 

I m [ / - 1 ] = - ( , A + l ) ] - [ . / ( ^ + l ) ] 1 / 2 , (A4) 

for v< VT and for v> VT, we have 
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(A6) This demonstrates that the CDD pole in f~l moves 
onto the real axis as 6/ —> 0. 
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A unitary operator is defined, connecting the states of the measured system and the measuring-instrument 
system before and after interaction, by means of which the post-interaction values of S in the instrument 
can be used to calculate the pre-interaction (R)w and A2R in the measured system, where R and S are 
Hermitian operators. The premeasurement state of the instrument need not be known, and the same meas­
urement operator is applicable whether the system to be measured is originally described by a pure case or a 
mixture. Finally, this theory is contrasted briefly with the measurement theory of von Neumann. 

IN this paper a formal theory of measurement for 
quantum mechanics is developed which seeks to 

realize, as nearly as possible, the same objectives pro­
posed and attained in classical measurements. To this 
purpose a brief discussion of the nature of classical 
measurement and the necessary modifications imposed 
by quantum mechanics is followed by definition and 
investigation of a unitary operator which, it is said, 
successfully fills the role of a measurement operator in 
quantum mechanics. Because this theory differs in 
several respects from the well-known theory of von 
Neumann, some points of contrast are made explicit 
in an Appendix. 

1. MEASUREMENT 

The process of measurement, taken in a classical 
framework, can be conceived schematically as follows. 

There is a physical system to be measured, i.e., a 
physical system with a property to which some nu­
merical value can be assigned, and there is another 
physical system to act as measuring instrument, i.e., 
another physical system with a property to which some 
numerical value also can be assigned, and this value 
can be ascertained by reading the instrument. Before 
measurement the system to be measured is in an in­
definable state such that the property in question has 
a definite but unknown value. A measurement is per­
formed by allowing this system to interact for a time 
with the measuring instrument, and after this inter­

action the instrument is read, i.e., a numerical value 
is obtained from it by observation. If the interaction 
has been of the proper kind, then the numerical value 
read from the instrument can be correlated with the 
numerical value of the property to be measured as it 
existed in the measured system prior to the measure­
ment—"prior to the measurement" because it seems 
essential to the notion of a measurement that it answer 
a question about the given situation existing before 
measurement. Whether the measurement leaves the 
measured system unchanged or brings about a new 
and different state of that system is a second and inde­
pendent question. 

When one applies this concept of the measurement 
process to the systems encountered in quantum me­
chanics, however, certain additional refinements must 
be made.1 

I t is no longer true in the quantum-mechanical case 
that the property of the system to be measured neces­
sarily has a definite value before (or after) the meas­
urement interaction. If the property is represented by 
the Hermitian operator R and the premeasurement 
state of the system by the normalized vector |<£), then 
one can say only that in an ensemble of identical 
systems the property has the average value (i?)av 

= (<l>\R\<f>), with the dispersion about this mean given 

1 Of the very extensive literature on measurement in quantum 
mechanics perhaps the most informative and most provocative 
article is still that of H. Margenau, Phil. Sci. 4, 337 (1937). 
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by A2R=(R2)&V— (i?)av2, and in general this dispersion 
will not vanish. Further indefiniteness is introduced if 
the ensemble of systems is represented not by a pure 
case but by a mixture with statistical operator Uy so 
that {R)&y=Ti(UR). In quantum mechanics, moreover, 
the interaction with the instrument changes the initial 
state of the system being measured, so that the result 
of measurement, as here described, is by the nature of 
things applicable only to the premeasurement state (or 
to that subensemble of the original ensemble which 
did not interact with the instrument). It is an extra 
dividend, so to speak, that in classical or macroscopic 
measurements one can assume the measured quantity 
will either be the same after measurement or else 
changed to an extent that can be allowed for in the 
calculation. 

On the basis of this brief discussion of the measure­
ment process, the following description of a measure­
ment in quantum mechanics can be proposed: The 
system in which quantity R is to be measured interacts 
with an appropriately chosen measuring instrument, in 
which quantity S can be read ojf> in such a way that the 
values of S after interaction give (R)&y and A2R as they 
were before interaction. No mention is made here of 
using the measurement to determine \<j>) or Lr, for since 
the measurement deals with the directly observable it 
cannot reasonably be expected to give |$) or U, 
neither of which is immediately an object of experience.2 

In addition to the system to be measured, which we 
can assume given, the measurement involves two other 
elements; namely, the choice of an appropriate system 
to act as measuring instrument, and the design of a 
suitable interaction. 

As has been indicated, two basically different situa­
tions must be distinguished. The premeasurement state 
of the system on which the measurement is to be 
performed may be represented by a state vector \<f>), 
i.e., the system is in a pure case, or it may be represented 
only by a statistical operator U> i.e., the system is one 
of an ensemble in a mixture of quantum-mechanical 
states. As it may not be known which of these alterna­
tives is realized in a given case, it is desirable that the 
same measurement process work equally well in both 
situations. For convenience the less general case will 
be treated first. 

2. PURE CASE 

Before measurement the unknown state of the system 
in which R is to be measured will be represented by 
the state vector |#) and the unknown state of the 
measuring instrument by |^). The eigenvectors of R 
are denoted by |<£x) and those of 5 by |^x), so that 

S|*x>«5x|*x>. 
2 The possibility of constructing an "equivalent" state vector 

is mentioned in reference 7. Note also in the Appendix the com­
ments on von Neumann's projection postulate. 

Operator S, representing the quantity read off in the 
instrument, is chosen so that the two sets of eigen­
vectors are equal in number. Previous to any interac­
tions the combined state of the two systems will be 
represented by | <|>)before, and one writes 

j$>^fore=|*>®l^> 
= Ln.r^l*M>®l^>, (2) 

where 

In the pre-interaction state the average or expectation 
value of R is 

and the dispersion is given by 

A^^-^Lxlax lVxCrx-E . l^ lV , ) . (5) 

To perform a measurement, therefore, one must be 
able to determine the set {|aM|2} from repeated read­
ings of the quantity S in the measuring instrument 
after interaction with individual systems in an en­
semble all of whose members are in the state described 
by |0>. 

The combined state of the two systems prior to the 
measurement interaction must be related to the com­
bined state after interaction by means of a unitary 
operator, M, the measurement operator: 

M | ̂ before ^ | Rafter^ (5) 

At this point, then, the measurement problem consists 
in construction of a suitable operator M. It will be 
shown that the desired unitary3 operator is defined by 
the expression 

M E , , , a A k M ) ® i ^ ) = L M , v ^ | ^ ) 0 | ^ ) , (7) 

where Eq. (2) has been used for |<f>)*>efore 
This operator has the required measurement proper­

ties, for it yields the result 

<S)av* ft-=£,|aM |V (8) 

Each reading of the instrument, therefore, will give 
one of the values sM, and by establishing the frequency 
with which each of these values appears in repeated 
readings of the instrument it is possible to obtain the 
set of numbers {|a„|2}. Employed in Eqs. (4) and (5) 
these numbers allow calculation of (R)&v

heioTe and 
^before F r o m t h e s t a t i s t i c s 0f the instrument readings 
one passes to the statistics of the measured quantity, 
and thus the measurement has been made. 

To perform this measurement it is not necessary to 
have an ensemble of measuring-instrument systems all 

3 The operator M, one may note, is not only unitary but also 
Hermitian, so that M 2= 1. Its eigenvalues of 1 and — 1 correspond, 
respectively, to the multiply degenerate eigenvectors 

2-*'2(l + V ) " 1 / 2 ( 14v><8> | * ,>+1 *,><8> | * , » (M<V) 
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in the same initial state, since the measurement is inde­
pendent of the instrument's initial state. Therefore 
one may use an ensemble of instruments in arbitrary 
states, or else the same instrument may interact suc­
cessively with members of the ensemble of systems 
being measured if it is read between interactions. 

An important feature of the measurement interaction 
denned by the operator M of Eq. (7) is that these 
interactions can be linked together to form a chain 
terminating in a measurement. Writing aM for (| aM 12)1/2, 
one can say that the post-interaction state of the in­
strument is equivalently 

W=E„^'w\M, (9) 

where €<ju) is an unknown phase factor—"equivalently" 
in the sense that it reproduces Eq. (8).4 If now a second 
interaction takes place using this instrument as the 
system to be measured and choosing a new instrument 
whose state is represented by |%) and in which the 
quantity T can be read off, that measurement will be 
represented by the operator M2, where 

M2W® | X) = Af2 EM,* CL^^C^)® I X„) 

= EM,„ aMe*i(">c,|ik>® | XM>. (10) 

After this second interaction one has 

<r>av*^=L,kj%, (ii) 
and determination of the frequencies of the various ^ 
through repeated interactions and readings of the new 
instrument allows one to calculate {|^|2}, and thus 
the original (i?)av

b6fore and A2i?before are known. This 
procedure of constructing additional measurement in­
teractions can be carried on indefinitely with no loss 
of precision in measuring the quantity initially sought. 
Such additivity is a desirable feature in any measure­
ment process. 

If the operators R and 6* represent the same dy­
namical quantity, then their sum may be conserved 
during the interaction. The expectation values are 

(R+S)a™™=£Ml, | a, |21 b, |2 ( rM+0, ( 1 2 ) 

(R+SU*iUir= £„ , , k 121 h 12 (r,+s„), 

and these two expressions will be equal if the eigen­
values are such that 

rv—rM=5r—Sp. (13) 

For this case R+S is conserved or, in other words, 

4 Because of this arbitrary phase factor introduced by reading 
the instrument it is not possible to reapply the measurement 
operator after measurement and use the property AP**1 to regain 
the premeasurement situation. 

R+S commutes with the measurement operator5: 

pf,JM-S]=0. (14) 

Finally, it is possible to give an explicit formulation 
of the measurement operator. Inspection of the defini­
tion of M in Eq. (7) shows that one can write6 

M=z»M(<i>A®\&)(h\- (15) 
This form makes evident the dependence of the meas­
urement interaction on both the quantity being meas­
ured and the quantity used as an index in the measuring 
instrument. Unitarity is apparent, and Eq. (14) is 
verified under the conditions stated in the discussion 
leading up to that equation. 

3. MIXTURE 

Thus far the measurement process has been con­
sidered for the pure case in which the system to be 
measured is found in a quantum-mechanical state 
represented by |<£). But one must also allow for the 
possibility that the system is part of an ensemble 
which cannot be represented by a single state vector 
but only by a (positive-definite Hermitian) statistical 
operator U. This more general case can be treated 
briefly since it leads to no new difficulties. 

Let the statistical operator for the combined systems 
(the system to be measured and the measuring-instru­
ment system) before interaction be U, where 

U=Ui®Uu. (16) 

The operator Uj refers to the system to be measured 
and represents a mixture, while Uu refers to the 
measuring-instrument system and represents the state 
\\p). The operators R and S are as before, and they 
again have the eigenvectors \<f>\) and \\p\) and eigen­
values rx and sx. If M is the measurement operator 
defined in Eq. (7), its effect on the statistical operator 
will be given by 

Uf=MUM\ (17) 

where Uf is the statistical operator of the combined 
systems after the interaction. Using these statistical 
operators one obtains 

<i2)avb6fore=Tr (C7i?) 
= EMK>w„|a,M|2]rM, (18) 

and 
<S>avafter==Tr (£/';?) 

= Z M C Z ^ , | ^ | 2 > / 4 , (19) 
6 It is also possible to consider conservation by observing that 

any quantity commuting with M (i.e., a conserved quantity) 
will have as eigenvectors the two eigenvector sets of M noted in 
reference 3. Those vectors are eigenvectors of R+S under the 
condition of Eq. (13). 

6 This operator could also be obtained by summing the pro-
jection^ operators formed from the individual eigenvectors of M 
listed in reference 3, each projection operator being weighted 
with the corresponding eigenvalue (dyadic representation). 
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where aVM=(</v|^), and wv and \uv) are eigenvalues and 
eigenvectors of Ui. For a given statistical operator Ui 
the sum X^w„|a„M|2 is a function of ju> so that the 
situation represented by Eqs. (18) and (19) corresponds 
exactly to that in Eqs. (4) and (8). Thus the measure­
ment process is the same in both cases.7 

4. CONCLUSION 

If one accepts the proposition that the function of 
measurement in quantum mechanics is to determine 
the average value and the dispersion of some physical 
quantity in a given system as they are prior to meas­
urement, then it is possible to define a unitary operator 
which can rightly be called a measurement operator. 
This operator links the instrument readings after meas­
urement with the premeasurement condition of the 
measured quantity in just the way that allows the 
desired calculation, and one need not assume the in­
strument is in a known state prior to the interaction. 

The interaction which gives rise to the measurement 
can be effectuated through intermediate systems in a 
series leading up to an ultimate instrument reading 
and measurement without any loss of precision. In the 
measurement interaction itself not all quantities can 
be conserved, of course, but under certain circum­
stances the sum of the measured quantity and the 
measurement-index quantity is conserved. 

A final property of the measurement is that the 
same measurement operator is equally effective whether 
the system on which the measurement is performed is 
a pure case or a mixture. Because the measurement is 
concerned only with the average value of a particular 
quantity it makes no distinction between state vectors 
and general statistical operators.7* 

APPENDIX 

The following comparison with the measurement 
theory of von Neumann may be of interest. 

According to von Neumann8 a measurement has been 
performed only if after interaction the quantities R and 
5, in the measured system and the instrument, re­
spectively, will simultaneously have the pair of values 
fp. and sv with probability 0 for fX9^v, and with proba­
bility |($M|0)I2 f° r M=^j where \<j>) is the unknown 

7 In reference to the statement in Sec. 1 about the measurement 
not allowing calculation of \4>) or U (here Ui), it may be remarked 
that the measurement does not even tell us whether the measured 
system was in a pure case or in a mixture. As far as the results of 
the measurement are concerned it is always possible to recon­
struct an equivalent state vector for the measured system, i.e., 
one which will give Eqs. (4) and (18). 

7* Note added in proof. Another publication will investigate the 
realization of this formal theory in actual "physical process. 

8 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New Jersey, 
1955), Chap. VI, Sec. 3, especially p. 440. 

pre-measurement state of the measured system. To 
achieve this result he defines the unitary measurement 
operator A by the relation 

00 OO 

A E *MF|0M>®I&)= £ *M*I*.>®I&H-V>. (Ai) 

fXtV=—CO P,V=—00 

Written out explicitly, the operator is 

A = E M . , | * M > ( * M I ® I ^ + . X ^ I , (A2) 

which is unitary, provided {|^)} is an infinite set. 
Before measurement he assumes the instrument is in 
the known state |^o) so that the combined state is 
given by 

I * > = £ M < * . I * > I * M > ® I M (A3) 
and after the measurement interaction it is 

|$>' = A|$> 

= E*<A.|*>I*M>®I*M>. (A4) 

By invoking what has been referred to as the "pro­
jection postulate/'9 which states that each measure­
ment puts a system into an eigenstate corresponding 
to the observed eigenvalue, von Neumann obtains a 
measurement of rM in the measured system through an 
observation of sM in the instrument, and the proba­
bility of this measurement is |(<£M|0)I2- Stating the 
result more generally, one can say that von Neumann's 
measurement operator together with the projection 
postulate yields the relation 

( P M ® PM)av a f t e r= ^(P[0j ) a v
b e f o - , (A5) 

as a statement of the measurement process, where 
P\J>^] is the projection operator for |<£M). Equation 
(A5) is valid whether the measured system is described 
by a pure state or a mixture prior to the interaction. 

The chief differences between von Neumann's theory 
of measurement and the theory developed in this 
paper are two. In the first place, von Neumann must 
assume the premeasurement state of the instrument is 
known, whereas the above theory does not make that 
assumption. In the second place, von Neumann em­
ploys the projection postulate to yield measurements 
which give an exact value to the measured quantity 
with each single reading of the instrument.10 The theory 
of this paper does not use that postulate and produces 
a more thoroughly statistical type of measurement 
process. 

9 For a recent criticism of this postulate on the basis of its 
incompatibility with accepted statistical notions, see H. Margenau 
and R. N. Hill, Progr. Theoret. Phys. (Kyoto) 26, 722 (1961). 

10 There is clearly a relation between these two differences, 
since knowledge of the instrument's pre-interaction state is 
presumably gained by a measurement or observation which 
produces an eigenstate. 


